Limits onLpRegularity of Self-Adjoint Elliptic Operators
نویسندگان
چکیده
منابع مشابه
Diagonals of Self-adjoint Operators
The eigenvalues of a self-adjoint n×n matrix A can be put into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according to multiplicity, and the diagonal of A is a point of R that bears some relation to λ. The Schur-Horn theorem characterizes that relation in terms of a system of linear inequalities. We prove an extension of the latter result for positive trace-class operators on ...
متن کاملNon-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملAdjoints and Self-Adjoint Operators
Let V and W be real or complex finite dimensional vector spaces with inner products 〈·, ·〉V and 〈·, ·〉W , respectively. Let L : V → W be linear. If there is a transformation L∗ : W → V for which 〈Lv,w〉W = 〈v, Lw〉V (1) holds for every pair of vectors v ∈ V and w in W , then L∗ is said to be the adjoint of L. Some of the properties of L∗ are listed below. Proposition 1.1. Let L : V →W be linear. ...
متن کاملLimits of functions and elliptic operators
We show that a subspace S of the space of real analytical functions on a manifold that satisfies certain regularity properties is contained in the set of solutions of a linear elliptic differential equation. The regularity properties are that S is closed in L2(M) and that if a sequence of functions fn in S converges in L2(M), then so do the partial derivatives of the functions fn.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1997
ISSN: 0022-0396
DOI: 10.1006/jdeq.1996.3219